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Abstract

The involute function ¢ = tan¢ — ¢ or ¢ = inve, and the
inverse involute function ¢ = inv™'(¢) arise in the tooth ge-
ometry calculations of involute gears, involute splines, and
involute serrations. In this paper, the explicit series solu-
tions of the inverse involute function are derived by pertur-
bation techniques in the ranges of e} < 1.8, 1.8 < |e| < 5,
and |e| > 5. These explicit solutions are compared with the
‘exact solutions, and the expressions for estimated errors are
also developed. Of particular interest in the applications
are the simple expansion ¢ = inv™'(g) = (3¢)!/3 —~ 2¢/5
which gives the angle ¢(< 45°) with error less than 1.0%
" in the range of € < 0.215, and the economized asymptotic
series expansion ¢ = inv~!(e) = 1.440859¢!/® — 0.3660584¢
which gives ¢ with error less than 0.17% in the range of
€ < 0.215. The four, seven, and nine term series solutions
of ¢ = inv~(¢) are shown to have error less than 0.0018%,
4.89 % 107%%, and 2.01 + 10~7% in the range of £ < 0.215,
respectively. The computation of the series solution of the
inverse involute function can be easily performed by using a
pocket calculator, its practical applications in the gear tooth
geometry calculations are illustrated in this paper.

1 Introduction

The involute curve is most widely used for the tooth shape
of gears, splines, and serrations. In Fig.1, the involute curve
BC is generated with respect to the base circle with radius
7y such that the length of the normal AP equals the length
of the arc AB. We can derive the parametric expression
for the involute curve BC as follows (Mabie and Reinholtz,
.1987; Paul, 1979; Shigley and Uicker, 1980).

{’"zc_gﬁb? (1)

€=invg =tan¢ — ¢

If the pressure angle ¢ is known, inv¢ can be readily de-
termined. But, in many applications, the value of ¢ =
inv¢ is usually known while the pressure angle ¢ is to be
found. This problem arises quite often in the gear tooth

FIGURE 1: Base circle and involute curve.

geometry calculations such as in the determinations of the
non-standard center distance, non-standard pin dimensions,
and outside radius of the pinion at which the tooth be-
comes pointed, offsets for cutting non-standard gears with
teeth of equal strength, and minimum achievable quality in
generation processes and maximum profile heights of spur
gears (Green and Mabie, 1980; Mabie and Reinholtz, 1987;
Sankaranarayanasamy and Shunmugam, 1988; Shigley and
Uicker, 1980) as well as in the measurement of threads over
wires. The calculations of the inverse involute function are
also involved in the sevolute function for involute splines
and serrations such as in finding the measurement between
pins for the maximum actual space width of an internal
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spline and for the minimum actual space width of an ex-
ternal spline (Amiss et al., 1984, pp. 147-154; Ryffel, 1984,
pp- 895-927). The sevolute function is defined as the differ-
ence between the secant of an angle and the involute of the
angle as follows (Ryffel, 1984, p. 86)

seve = sec ¢ — inve (2)

Obviously, no exact solution for ¢ = inv™!(e) can be
expressed explicitly in terms of elementary functions of e.
Due to the lack of existence of the explicit solution of
the ‘inverse involute function, some mechanism textbooks
(Shigley, 1969, for 0° < ¢ < 45° Shigley and Uicker,
1980; for 0° < ¢ < 45°; Mabie and Reinholtz, 1987, for
0° < ¢ < 60°) and design handbooks (Huckert, 1956, for
0° < ¢ < 62°% Parmiley, 1985, for 10° < ¢ < 40°; Ryffel,
1984, for 0° < ¢ < 90°) usually give an extensive table of
(¢,inv¢) from which inv™!(¢) can be linearly interpolated.
In order to get more accurate results, higher order inter-
polations are required. Another commonly used method to
obtain ¢ for the given ¢ = inv¢ is to use iteration meth-
ods such as the following Newton’s algorithm (Gerald and
Wheatley, 1984)

¢"+1=¢n+%ﬁt7 n=20,1,2,--- (3)
where the value of ¢ is known, ¢, is the previously iterated
value, and ¢,4+1 is the currently iterated value. It has been
pointed out by Thoen (1988) that the above iterative algo-
rithm is susceptible to divergence depending on the initial
guess ¢o and the range of final value of ¢.

One way to obtain the good initial value ¢¢ for the it-
eration algorithm may be through the look-up tables of
{¢,invg). But, this is not convenient, especially, when a
large number of inverse involute function calculations are re-
quired. For example, the determination of pinion-cutter off-
sets required to produce nonstandard spur gears with teeth
of equal strength (Green and Mabie, 1980; Mabie and Rein-
holtz, 1987) and the determination of the minimum achiev-
able quality in generation processes and maximum height
of the profile for a given gear (Sankaranarayanasamy and
Shunmugam, 1988) require a great deal of computations of
the inverse involute function. The frequent manual interrup-
tions of the computer program for the table loop-ups are too
involved; and an efficient method, without susceptible to di-
vergence, for the solution of the inverse involute function is
strongly desired in such cases so that computational power
of a computer can be fully utilized. An efficient and reliable
method for the solution of the inverse involute function may
also be desired for generating non-standard spur gears and
involute splines by using CAD/CAM systems.

In this paper, the complete explicit expressions for ¢
in terms of ¢ = inv¢ are derived by perturbation tech-
niques. The value of the pressure angle ¢ is usually less
than 45° in engineering applications, for which the devel-
oped explicit formula for the pressure angle ¢ has error less

than 1.58 » 107° radian. Sometimes, the pressure angle ¢
may lie between 45° < ¢ < 60°, for which the error of the
explicit formula for ¢ is less than 2.52% 107° radian. Taking
the potential accuracy of manufacturing into account, the
accuracy provided by the explicit formula developed in this
paper should be satisfactory for practical applications. It
should be pointed out that what distinguishes the solution
method presented in this paper from all currently existing
methods are its non-iterative and explicit natures. Since
the solution of ¢ is formulated ezrplicitly, unlike iteration
methods, the computation of the explicit formula doesn’t
have divergence problem and is more convenient and effi-
cient. Furthermore, the solution from the first two terms
of the explicit formula of the inverse involute function for
involute gearing applications is as accurate as that through
linear interpolation of extensive tables of involute function,
and the two-term formula is simple and can be easily re-
membered. Hence, the teaching and learning of involute
gearing can be facilitated using the explicit direct and in-
verse involute formulas derived in this paper. With these
simple formulas, the use of lengthy extensive tables of the
involute function as appendices in many outstanding mech-
anism textbooks (Shigley, 1969, for 0° < ¢ < 45°; Shigley
and Uicker, 1980; for 0° < ¢ < 45°; Mabie and Reinholtz,
1987, for 0° < ¢ < 60°) is no longer necessary.

2 Approximation of inv () when |¢| < 1

2.1 Approximation by Asymptotic Series The involute pres-
sure angle ¢ is usually less than = /4 when the involute curve
is used as the tooth curve of spur gears, splines, and serra-
tions. Since inv(w/4) = tan(x/4)—= /4 ~ 0.215, the solution
obtained in this section is useful for tooth geometry calcula-
tions. For convenience, let € = invg and ¢ = ¢, then Eq.(1)
becomes

tanzx —z = ¢, ek 1. (4)

Since tanz — ¢ = f(z) is an odd function of z, we can
consider only the case when £ > 0, but the result will be
valid for € < 0 as well.

Let y1 = tanz,y2 = z + ¢; then, the solution of Eq.(4)
for the given € is the intersection of the curves of y; and y»
as shown in Fig.2. There are infinite solutions of = corre-
sponding to a given value of ¢ in Eq.(4). We only consider
the solutions which lie within z € (—n/2,7/2). However,
the following method can be easily extended for the interval
z € (—00,00). When |z | < 7/2, the Taylor series expansion
of tanz is

17 ., 62

z°
tanz =z + z +15m +315 +2835 +

22 (22" = 1B, an_y
Gy
where B, is the Bernoulli’s constant. Substituting the ex-
pression of tan z in Eq.(5) into Eq. (4), we get

17 P
3” +15z t35s +2835 too=e (6
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FIGURE 2: y; =tanz and yp =z + €.

Let the solution to the above nonlinear equation be the fol-
lowing asymptotic series

z(g) ~ Z On(€)Zn,

n=1

as e— 0%, (7

where §,.41(g) € 8a(€), as ¢ — 01. For more information
about perturbation techniques and properties of the asymp-
totic series, Bender and Orszag (1978), Kevorkian and Cole
(1981), and Nayfeh (1981) should be consulted. In the fol-
lowing presentation, the first four terms of the asymptotic
series of z(e) in Eq.(7) are derived. Eq.(7) can be written
explicitly as

z(e) ~ b1z1 + az2 + 8323 + Saza + 0(S5), (8)

where §;’s are functions of £, and both §; and z; are to be
determined. Substituting Eq.(8) into Eq.(6), we get

"[51931 + 8272 + 6323 + Suza + 0(55))° t3 [511‘1 o

[51951 +-- T+ [51161 P +~e (9)

315

2835
or

%{[(51:&:1 + 6222)° + 3(6171 + 6222)° (6323) + 0(6:163))
+[3(8121 + 222 + 8323) (8aza)] + [06163)] }
+{‘%{[(51z1 + 6222)° + 5(6121 + 6222)* (633) + 0(6363)]

+5(612y + b2z026323 )4(542:4) + 0(535:)} (10)

{[(511'1 +6222)" + (6121 + 8222)° (8323) + 0(8363)]
+0(5154)}

315

+§8—3-5 (6121)° +0(6162) } + 0(81") ~ e.

For brevity, we define the neglected term as 0(h). Expand-
ing Eq.(10) again, we get

%{[(51561)3 +3(8121)*(8222) + 3(6121)(6222)° + (8222)7)

+3[(8:121)% + 2(8:121)2(8222) + (8222)%] (63 23)
+3(6121)% (6az4) + O(h)}

+12_5{[(51z1)5 +5(8121)* (8222) + 10(8121)° (6222)° + 0(h)]
+5(8121)* (8as) + O(R) } Y
S {(B120)7 + 7(6121)° (B222) + O(h)]

+7(6121)% (6a24) + O(h) }

2835{(51:51) +0(R)} +0(h) ~ &.

Comparing the order on the both sides of Eq.(11), we can
obtain the following results by using the dominant balance
method (Bender and Orszag, 1978):

(i) ord(6})=ord(e):

then 63 =¢, or & =¢eY8,

Setting the coefficient of 67 equal to the coefficient of ¢ in
Eq.(11), we get

13

Zgd =1
3"

2kni/3
1 =3 1I‘t/’

or k=0,1,2

According to Fig.2, we only consider the real root, hence
zq = 343
(ii) ord(8362) = ord(63) = ord(¢%/%):
then 618 =6}, or & =6 =e.

Because the coeficient of £%/% in Eq.(11) is zero, we get

1 2
5(395:{3:2) + Ts-w? =0,
2 2
or Ty = —Exi —g.

(ii1) ord(6:83) = ord(628;) = ord(6i6) = ord(6]) =
ord(e"/%):

then 6265 =67, or 53:6?:65/3

7/3

Setting the coefficient of ¢'/° in Eq.(11) to zero, we get

7
(3z1x2 + 3zizs) + (Szlmz) + :cl =90,
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or
_ 17 9
e 122 4 2 x1w2+ sz? 17532/3

(iv) ord(ég) = ord(616263) = ord(8}63) = ord(616;) =
ord(8262) = ord(626,) = ord(6]) = ord(e®):

then 836y =67, or =6 =¢"°

Following the same procedure as shown above, we can get

—(:1:2 + 6:31:322:3 + 3ziz4) + (10:1:1:1:2 + 5zizs)

17
. +375(73%2) + 553 2835 =0
Substituting z, = 33 gy = ~2/5, z3 = 9 % 32/3/175 into
the above equation, we obtain

_2_31/3

ST A

The asymptotic series z(¢) = inv~!(¢) in Eq.(8) becomes

oat/s s 2 9 oo sz 2 31/3 /5 4 12
a(e) ~ 3¢ AT A 175 - (12)
o0
or z(e) ~ Zaue(z"‘lm, (13)
n=1
where a1 = 3a = —%a = %30 =

—1%:3'/3, etc. The coefficients of higher order terms can
be derived in the same manner or by using computer sym-
bolic manipulation software. The asymptotic series (13) has
the following property

N
z(e) — Zane(z""l)/3 < ane®N VB as e 0t YN

n=1
(14)
or, alternatively
N
2(6) =Y ane® %~ an @V a5 e — 0%, VN,
n=1
(15)

Therefore, we can define the asymptotic solution zx(¢) and
the estimated error En(e) either by aneV =73 (loose) or
an+1e@NFD73 (precise) as follows.

Z2(e) ~ 3M/31/3 %e
(16)

E2(€) 32/3 5/3

zo(€) ~ 31/3.1/3 _ %e+ T%32/365/3___I,27,531/357/3

_ 144 &+ 3258 32/3.11/3 _ 49711 31/3,13/3

_ 1130112 &S+
9306171875
5169659643 32/3,17/3

95304506171875

5169659643 32/3.17/3
95304506171875

[ Bale) ~

(17)

16

In Table 1, we compare the asymptotic solutions
x2(€),z9(¢) and the estimated errors E»(¢), Ey(e) with their
exact values. The exact solutions are obtained by evaluat-
ing tanz — z = ¢ directly by using an IBM 3081K with
the Fortran program written in the double precision mode.
Fo clarity, only the first three significant digits of the exact
value £ are given in Table 1 and the following tables. From
Table 1, we can see that Fs(¢) is a good approximation of
the exact error; that is, an 416V T/3 is a better error ex-
pression than ane®N D73 for g(e) — SV a,e®n D/ In
Table 1, the exact error is defined as

Eexa.ct error

“He)| (18)

It should be pointed out that the exact error should be al-
ways less than the corresponding estimated error. The er-
rors using the formula (17) is extremely small when ¢ < 10°;
the dominant errors in the fourth column of Table 1 is the
round-off errors of variables because the floating-point num-
bers expressed in the double precision mode in the computer
can only carry 15 significant digits. From Table 1, we can
see that the asymptotic solution z2(¢) is a good approxi-
mation when |¢] < 0.05, corresponding to ¢ = 30°; and
Zo(c) matches the exact solution well. For the large value
of e,z9(e) is still a good approximation of z even when
1 < ¢ € 0. By using expressions for estimated errors
E,(¢) and Ey(¢), one can predict the errors a prior, that is,
before calculating the asymptotic solutions.

Note that the errors of asymptotic solutions z2(e) and
z9(e) are less than 1.0% and 2.01 * 1077%, respectively,
when ¢ < w/4, and the maximum error occurs at ¢ =
7/4; these percent errors are the maximum error in ¢ ex-
pressed as a percentage of the range of ¢. This accu-
racy is satisfactory for tooth geometry calculations. 2.2

= |exact inv™'(g) — asymptotic inv

Economizationof Asymptotic Series by Chebyshev Polynomials
To improve the accuracy of the two term approximation

z2(¢), we can apply the process of series economization to
z(¢) in Eq.(13) by using shifted Chebyshev polynomials. As
an example, the four-term asymptotic series in Eq.(12) is
economized to a two-term expression as follows. When gl/s
is factored out, Eq.(12) becomes

2.2 + 9 _q2/3,4/3 _ ___2_31/366/3).

o /3 (al/8 _
za(e) ~ &2 (3 5 175 175
(19)

Let t = €2/3, then, Eq.(19) becomes

za(t) ~ VE(3'/° - %t + D g3 _ —2-3‘/%3). (20)

175 175
Define
2 9 2
P) =313 = 2y 4 D gsz 2 qu/88 21
t)=3 5t+ 1753 t 1753 (21)

we can use Chebyshev polynomials to economize the power
series P(t) (Abramowitz and Stegun, 1970; Cheney, 1982).
Since the particular interest to engineering applications is in
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TABLE 1: Comparison of z(e) = inv™'(e) and estimated errors E(¢) with their exact values for lel < 1.
‘ Ey (radian) E, (radian)
€ = inv(Zexact ) - Tezact zo(€) za(e)
Eczact Ecaﬁmatc Eezact Eestimate

1.77 «10~° 1° 1°0.00" 1.15% 107 | 2.89410°%7 1°0.00" 2.78 x 1011 2.78 x 10711

2.22 % 107* 5° 5°0.00" 8.74%x10718 | 2.244107% 4°59'59.98" 8.72%1078 8.72 %1078

1.79 %+ 1073 10° 10°0.00" 9.71x 10" | 3.10%1072 9°59'59.42" 2.83 % 107° 2.83 %107
1 6.14%107° 15° 15°0.00" | 8.33%107"7 | 3.33x107'7 | 14°59'55.47" | 2.20 %107 2.21%107°

1.47 x 1072 20° 20°0.00" 0.00 5.03%1071% | 19°59'42.27" 9.57 x 10~° 9.66 x 105

3.00%1072 25° 25°0.00" 5.75%107'% | 2.63x1071 | 24°58'57.14" 3.05%107* 3.09%107°

5.36 % 1072 30° 30°0.00" 2261071 | 7.21+107'% | 29°57'14.84" 8.01%107* 8.19%107*

8.93 x 1072 35° 35°0.00" 597%10712 | 1.28%107'° | 34°53'38.41" 1.85x10~% 1.91%1073
. 1.41%1071 40° 40°0.00" 1.09%107° | 1.71%10°° 39°46'33.56" 3911073 4.08 %1073

2.15 %1071 45° 45°0.00" 1.58%107° | 1.84%107% | 44°33'19.32" 7.76 % 1073 8.23 %1073

3.91 %107} 50° 50°0.00" 1.97 %1078 1.74 %1077

4.68 %1071 55° 55°0.05" 2.26 x 107 1.53%107¢

6.85 % 1071 60° 60°0.52" 2.52%10°° 1.32% 1075

1.01 65° 65°6.05" | 2.93x107° | 1.19x10~*

1.53 70° 70°1'20.70" 3.91%10"% 1.24 %1073

1.82 ~72° 71°4'3.58" 1.18 %1072 3.37+107°

the range of ¢ € (0,45°), corresponding to € € (0,0.215) and
t = £2/% € (0,1/3), we use shifted Chebyshev polynomials
to get the final result as follows.

The expression for the estimated error can be derived as
follows

23 s 2 a1 Ee) = |-zt
Py= (-S4 3y (2330 3y, < = za(@)ll + llza(e) — 2220
1400 © 15120 5 175 340 13 2/s i
~ &_57/ ( 3 3 )61/3 (26)
32/3 31/3 31/3 175 1400 15120
(1400 - 12600)T2 + 75600 (22) ~ 1.390387 % 10%¢'/® + 0.0164828:7/2

Where T;’s are the terms of Chebyshev polynomials with

If we only consider the range of ¢ € (0,35°) for € € (0,0.1)

IZ: <‘1- and ¢t = ¢2/® € (0,0.2), following the same derivation as
by 33 38 9 3x3%/3 31/3 shown above, we can get the approximate solution and the
:  (£) = _ ST N2 3377 37 . : . :as f i
Let P.(t) (3 120 0+ 15120 5 75 + 3 21 é)3)t corresponding expression for the estimated error as follows
233 (e) ~ 1.4417356/% — 0.379223¢ (27)
- P - Pl < 32/3 T E3%(e) ~ 0.514274 %« 107 %'/ 4 0.0164828¢7/°
en [IP(H) =Pl < (3555 - 12600 )Tl + ” 76002 '
‘ 32/3 31/3 31/3 In Table 2, we compare the economized asymptotic solu-
< ( - tions z32(e), z32(¢) and the estimated errors ES(¢), E5o(e)
1400 12600 75600 with their exact values. From Table 2, we can see that
< 1.390387%107° (24)

Therefore, the following economized asymptotic series solu-
tion can be obtained

when ¢ is w1thm the interval (0, 35° ),:1;25(5) is more accu-
rate than z32(e). Both the exact error E3 and estimated
error E3(¢) are compared with the exact error E; of the
simple expansion z2(e) = (3¢)'/® — 2¢/5 in Fig.3, where the

235 (e) e /3 P.(t) ~ e P.(¥/3) error is defined as
2/3 1/3 2/3 1/3
(31/3 _3 3 )61/3 - (Z L O € E3S = Zexact — 250(€) (28)
1400 ° 15120 5 175 840
~ 1.440859¢'/% — 0.3660584¢. (25) The improvement of the accuracy is obvious.
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TABLE 2: Comparison of z2.(¢) = inv™!(e) and estimated errors Fa.(c) after series economization with their exact values for |e] < 1.

7 E3% (radian) E3? (radian)
£ = inv(zexact) Leract x%i Z%g
Eczact Eesﬁmatc Eezact Ecstimate
1771078 1° 59'56.54" 1.68 %1078 1.68 %1075 59'58.72" 6.19 x 108 6.22 x 1075
2.22%107% 5° 4°59'44.17" 7.68%107° | 8.42x107° 4°59'54.51" 2.66%107° | 3.11x107°
1.79 %1073 10° 9°59'37.13" 1.11 %1074 1.69x10* 9°59'54.22" 2.80 % 1073 6.25 % 105
- 6.14%107° 15° 14°59'45.98" 6.80x107° | 2.55x107* 15°0'2.39" | ~1.16%107° | 9.43x107°
1.47%1072 20° 20°14.04" —6.81%107° 3.43%10~* 20°0'18.04" | —8.75%107° 1.27 %107
3.00% 1072 25° 25°0'57.90" —2.81%107* | 4.37+107* 25°0'32.65" | —1.58x107* | 1.64x107*
5.36 % 102 30° | 30°1'42.92" —4.99 %10~ 5.43%107* 30°0'25.16" ~1.22x107* 2.12x107¢
8.93x1072 " 35° 35°1'55.68" —5.61%107* 6.80 %107 34°59'13.87" 2.24 1071 2.89%10%
1.41 %1071 40° 40°0'31.22" —1.51%10"* 8.94x10~*
2.15% 107! 45° 44°55'30.03" 1.31x103 1.29% 1073
then Eq.(4) becomes
3 L SR |
S tan(5 -9 = (5 -v) =1, (31)
T
n(coty +y— 5) =1. (32)
~ Expanding coty in the Taylor series for 0 < |y| < =, we get
o
©
= 1 1 22" B,y !
) by = =~ — oy — g — LS e .
L © vy = T3V T Y T oas? (2n)1
5 (33)
= Substituting £q.(33) into Eq.(32), we get
1 1 3 2 5 7!']
Ly — e —Zl=1 (34
"[(y V- mY ey )tV 3 (34)
5. oo
|D - y= 25"(77).%, as n — 0+’ (35)
0 45 ¢(deg.) n=1
where  8.(n) < ord(1) and &u(Myn > Gnt1(N)Yn+1, as

FIGURE 3: Comparison of the estimated and exact errors of the
economized asymptotic solution za. for 0 < ¢ < 45° with the
exact error Ey of the simple expansion z2(¢).

3 Approximation of inv™'(¢) when || > 1

n— 0%,

The details of the derivation for §; and y; are given in
Appendix A. The final results for z = inv_!(¢) and error
E(e) are as follows:

When ¢ = inv¢ becomes large, the asymptotic approximate
solution (16) or (17) will fail, and we have to seek another
expression for the solution of inv~!(¢). According to Fig. 2,
when € approaches infinity, z will approach 7 /2. Let

n=1/e=1/ivg, =z, n<l,  (29)

z=7n/2—-y, y=w/2-2z, y<L1i, (30)

(36)
In order to satisfy the condition of asymptoticity: fnyn >
Sn41Yn+1, as n — 07 corresponding to € — +oco. Let

1 n
e=-H (@37

nny >> n+1y'I 1 or
n n + 7 n
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Writing expression (37) explicitly, we get

£ > y_2=1r_’
¥y 2
e > Z—/3=—7r2/4—+.2/3z2
Yo /2 ’
3
ey Yo T/8AT oo,

ys  w2/4+2/3
and. € > %04
Ya
- The computer results in Table 3 show that when ¢ =
1/n > 5, the asymptotic solution (36) is a good approxima-
tion of the exact solution of inv™'(¢). The bigger the value
of €, the more accurate is the asymptotic solution. But
when ¢ € (72°,81°), both asymptotic formulae (17) and
(36) derived so far are not good approximations. There-
fore, we need to develop another asymptotic solution for

¢ = inv™*(¢) which will be accurate for the intermediate
values of e.

4  Approximation of inv—l(s) when |€] ~ 1

We seek asymptotic solution when ¢ is about 75° or 5r /12
and inv(57/12) & 2.42. Let

¢ = inv(¢)—inv(57/12), z=2+5%/12, (,z < 1. (38)
Substituting Eq.(38) into Eq.(4), we get

tan{57/12) + tan z
1 —~tan(5x/12) tanz

Since inv(¢) =~ 2,tan(57/1)tan z <ord(1), and Eq.(39) be-
comes

— z —tan(bw/12) = (. (39)

bl

(tan——+ta.nz Z tan— ta,nz z-ta.nI—z— = (. (40)
n=1

Using the identity tan(57/12) = 2 + v/3, Eq.(40) becomes

B+4v3)Y (2+VI) (tana)" —z=(  (41)

n=1

Using the Taylor series for tan z and perturbation series for
2(¢), finally, we obtain ( see Appendix B) the asymptotic
solution

z5(¢) ~ éz;_ + (7 - 4V3)¢ — (388 — 224V3) (2
+ %(323565\/5 — 560431)¢°

- %(97383044\/5 — 168672380)¢C* + - -+, (42)
and the estimated error
E5(¢) ~ %(97383044\/5 - 168672380)¢C%,  (43)

where ( = ¢ — inv(57/12). In Table 4, the exact and
asymptotic solutions, and the exact and estimated errors
are listed.
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5 Composite Approximate Solution of ¢ = inv~1(¢)
for —00 < e < +00

Combining the above three cases together, we get the fol-
lowing composite formulae for the inverse involute function
¢ = inv~!(¢) in Eq.(1) as follows.

( by = 333 g€+ i32/355/3 2 2 a3,
175
_ 144 &+ 3258 92/3.11/3;
3128125 &
_ 9711 31/318/8 _ <Llel < 1.8
¢ = 95 + (T — 4V/3)¢ — (388 — 224/3)¢?

+3(323565\/— - 560431)¢3

— 3(97383044/3 — 168672380)(* +
B=F-tt - (B 3+ (B4l

—[(%)4+12+%%]215'+ ~lel > 5

“ (44)
where (¢ =¢—inv(5%/12), 0or

—0.213729 % 1072° + 0.216645 » 10~2¢1/3
0467749 10-3515/% lel < 1.8

2 = 1.308997 + 0.0717968¢ — 0.02061910¢>
¢~ Q +0.6517008 x 10~2¢3
—0.1238501 % 1072¢* +--1,8 < |e| < 5

T _1 T 1 1
=%-= — 3.134068 7.017377
il v =t =
—16.82434—561 +-e0,lel > 5

(45)
The corresponding estimated error expressions are

130112 5 11 < 1.8

E(e) ~ 31;(97383044\/?_) — 168672380) (e — inv(57/12))%,
1.8< el <5
1r4 2 + 13) 1 | | >5
(E +x i Zg, €
(46)
1.21437 % 107 %%, |e| < 1.8

or E(e)~ { 1.238501+107%(e — 2.423054)*, 1.8 < |¢| < 5

16.82434;15, le| > 5
(47)

It should be mentioned that when ¢ < 1, corresponding
to ¢ < 65°, the accuracy of the nine term expression of z(¢)
in Eq.(17) is better than that of the seven term expression
in Eq.(44) for |¢[ < 1; when 1 < € < 1.8, the performance of
these two expressions is just exchanged.

18< el <5

( $1 = 1.44225¢/% — 0.45 + 0.106976£%/3 — 0.0164828¢7/°
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TABLE 3: Comparison of z(e) = inv™!(¢) and estimated errors E(e) with their exact values for || > 1.

. E¢ (radian)
€= inv(xexnct) Tezact 236(6)
Ee:act Eestimate
4.90 81° 80°53' 7.23" 2.00% 1073 5.96 % 1072
6.70 83° 82°58'50.14" 3.39x10~* 1.25% 1073
9.95 85° 84°59'52.79" 3.49%107° 1.73% 1074
17.60 87° 86°59'59.68" 1.57+1078 1.01%1073
55.70 89° 88°59'59.93" 3.15% 1077 3.13x 1078

TABLE 4: Comparison of z(¢) = inv™'(c) and estimated errors E(e) with their exact values for {e| ~ 1.

Es5 (radian)
€= inv(zexact) Tezact ZL‘S(S)

Eezact Ecstimatc
1.82 72° 72°0'16.56" 8.03%107° 1.63 % 10~*
2.20 74° 73°59'59.61" 1.89 %107 3.30%10°°
2.68 76° 76°0'1.69" 8.17+107° 5.77+107°
3.34 78° 78°1'30.46" 4.39%x 10" 8.88x107*
4.90 81° 80°56'40.28" 9.68 % 10~* 4.66  10~2

6  Applications in Gear Tooth Geometry Calculations

The following application examples illustrate the accuracy
and usefulness of the above explicit formulas of the inverse
involute function in the gear tooth geometry calculations.
The first example is for standard involute gears, the sec-
ond and third are about gearing system with non-standard
operating presure angle and operating distance.

Examplel A toothis 1.57 inch thick at the pitch radius
of 16 inch and a presure angle of 20°. At what radius does
the tooth become pointed (Shigley and Uicker, 1980, p.281)?
Let the presure angle and radius be ¢, and r., respectively,
at the point where the tooth becomes pointed. At pitch
radius, t = 1.57 in, 7 = 16 in, ¢ = 20°, and according to
Ref[10, 18]:

te = 2r,(—2t—r- + invg — inveg,) = 0.
Then .

invg, = p + invg = 0.063966883.
Hence

é: = inv™1(0.063966883).

Note that ¢ = 0.063966883 < 1; using Eq.(16), we get the
presure angle

_ .} 2 . _ o

¢z = (3e)3 — € (radians) = 31.58221025°.

The radius is

= 1S9¢ _ 176490071 in.
cos ¢z
with 0.0657% error. The exact values are ¢, =

31.64334714° and r, = 17.66069231 in, which were ob-
tained by computer using Muller’s method to solve the
nonlinear equation tan¢, — ¢. = 0.063966883. The val-
ues obtained by the four term asymptotic series Eq.(12)
are ¢, = 31.64337431°, and r. = 17.66069747 in (with
2.92 « 1075% error).

Example2 Two spur gears of 12 and 15 teeth, respec-
tively, are to be cut by a 20° full-depth 6-pitch hob. Deter-
mine the center distance at which to generate the gears to
avoid undercutting (Mabie and Reinholtz, 1987, p.183).

o1 = .;_d(k - % sin? ¢) = 0.04968 in.
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_ 1 No .o\ .
ey = Pd(k 5 sin ¢) = 0.02045 in.

2P;i(e1 + e2) tang
N1+ N

invg' = inve + = 0.02624

Using Eq.(16), we get

¢ = inv'(0.02624)
= (3%0.02624)% — -2- £0.02624  (rad.)
= 23.95424862°.
o
po= T8 14008207 . 00956305 in.
cos ¢' cos ¢’
B [+]
v, = T2008$ 125008207 _, poianngoqin,
cos ¢’ cos ¢’ ,
C' = ri+ry=2.313576889in.

with 0.0108634% error in C''. The exact values obtained
by numerically solving the non-linear equation (4) are ¢’ =
23.9682549°, and C' = 2.313828251 in., which match the
results calculated by using Eq.(17) or the first expression of
Eq.(44). The values obtained by using the four term expres-
sion of Eq.(12) are ¢’ = 23.9682573°, and C' = 2.313828294
_in. (with 1.8 * 107%% error). The values in (Mabie and
Reinholtz, 1987, p.183), obtained by using linear interpo-
lation from a table, are ¢' = 23.97°, and C' = 2.3144 in.
(with 0.02471% error). Therefore, the accuracy using the
two term expression (16) is comparable to that using the
linear interpolation method.

Example3 Two spur gears of 32 and 48 teeth cut by an
8-pitch, 20° pinion cutter mesh together without backlash
at the standard center distance of 5 in. To change the speed
ratio, it is necessary to replace the 32-tooth pinion with one
of 31 teeth. The tooth thickness on the cutting pitch circle
of 48-tooth gear and the 5-in. center distance are to remain
unchanged. Determine the value of e; that will give teeth of
the proper thickness to mesh with the 48-tooth gear. The
pitch diameter of the pinion cutter D, is 3.000 in., and the
number of teeth in the cutter N, is 24 (Mabie and Reinholtz,
1987, p.198).

N 31 _ )
rn o= 2Py 2%8 1.93751n.
_ N _ 48 .
re = 5P; ~ 3x8 3.0000 in.
_ Ni+N, 31438 _ .
C’ = 3P, = 2%8 = 4.938in.
C' = 5.000in.
cosd = Ccos¢. _ 4.938c0s20°
- c' T 5.000
¢ = 21.87°=¢,

Because e2 = 0, the generating presure angle of the gear 2
is ¢g, = 20°, and we can solve for ¢,, as follows:

(N1+N.)invdy, +(Na2+N.)inve,, = 2N inve+(N1+N;)inve,.

(31424)inve,, +(48+24)inve,, = 2x24inv20°+(31+48)inv21.87°.

Therefore,
inve,, = 0.021773.

Using Eq.(16), we get
dgi = inv '(0.021773)
(3 0.021773)% - -§- £0.021773  (rad.)
22.57568606°.
(N1 + Na2)ps

€1 = —_— - C td
27 €OS ¢y, e

]

where Cl:q4 is the standard center distance between gear 1
and the cutter.

Dy = DpCosg. = %cos 20°

0.3690 in.
Nl + Nc
2P,
31424 .
= 7% 38 = 3.4375in.
(31 + 24)(0.3690)

27 cos 22.57568606°

= 0.060597545in.

Cstd

er = —3.4375

with 0.4290168% error. The exact values obtained by
using the computer are ¢, = 22.58596534°, and e; =
0.060858547 in. The values obtained by Eq.(12) are ¢4, =
22.58596675°, and e; = 0.060858583 in (with 5.91 % 107°%
error). The values given in (Mabie and Reinholtz, 1987)
are ¢y, = 22.59°, and e; = 0.06096 in (with 0.1667% er-
ror). Without the explicit inverse involute formula derived

in this paper, in order to get the values of ¢ = inv™!(¢) in
the above gear tooth geometry calculations, interpolation of
¢ from an extensive table of (¢,inv¢) or iterative numerical
solution is imperative.

7  Conclusions

The explicit series solutions and estimated error expressions
for the inverse involute function ¢ = inv~='(¢) are derived
by using perturbation techniques. When || < 0.215 corre-
sponding to |@] < 45°, which is the usual range for the tooth
geometry calculations of involute gears, involute splines, and
involute serrations, we can just use the two term expression
22(€) of Eq.(16) with error in ¢ less than 1.0% of the range
of ¢ or 7.76 % 10~% radian. The smaller the value of ¢, the
more accurate of the explicit inverse involute formula. In or-
der to improve the accuracy of the two term approximation
of the exact solution, we can use the economized asymp-
totic solution z33(e) in Eq.(25), with error for ¢ less than
0.17% or 1.31 * 10~3 radian. Sometimes, we only consider
the range of ¢ € (0,35°) for most applications; then, we can
use economized asymptotic solution z33(¢), which has error
less than 0.04% or 2.24 x 10~* radian for ¢ € (0,35°).
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If a higher accuracy is required, we can use the first four,
seven, or nine terms of Eq.(17), which have error less than
0.0018%, 4.89%107%%, and 2.01%107°% or 1.41%107°,3.84x
1078, and 1.58 * 10~° radians for ¢ € (0,45°), respectively;
the maximum error occurs at ¢ = 45°. This accuracy should
be satisfactory for practical applications. Under any circum-
stance, if the explicit solution from Eq.(44) or (45) is used
as the initial value for the Newton’s iteration algorithm, the
convergence of the algorithm is guaranteed and the perfect
value of ¢ (reach the precision limit of the computer) can
be obtained in less three iteration steps.

"~ The accuracy using the two term inverse involute for-
mula ¢ = inv=!(e) = (3€)!/® — 2¢/5 is almost the same as
the accuracy using the linear interpolation technique from
a table of (¢,invg). Therefore, the use of the explicit for-
mulae derived in this paper, instead of an extensive table of
(¢, inve), are suggested in the tooth geometry calculations
of the involute gears, splines, and serrations. Practical ap-
plications of the derived inverse involute formulas in the
gear tooth geometry calculations are illustrated in this pa-
per. Since the asymptotic series renders the implicit inverse
involute function explicit, it is expected that these explicit
formulae will find their applications not only in the tooth
geometry calculations of gears, splines, and serrations, but
also in some other fields of engineering where the inverse
involute function is involved.
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Appendix A. Derivation Details for |¢| >> 1

Egs.(34) and (35) are repeated here for convenience.

1. 1 1s_ 2 5_ .. _E]_ _
n[(y v- &V sy J+y-5|=LA-D

Y~ Y 6n(Myar nln) K Ina(m)y as n—0t(A-2)

n=1

To find the leading order term of y, let
Y~ 51 Y. (A - 3)

Substituting expression(A-3) into Eq.(A-1), we get
1
—— +ord(1)| ~ 1.
n[61 n ( )]

Let ord(1)=ord(n/61) or §; = n; then, 1/yn =1 or
1 = 1. The leading order approximation of y becomes

y~ (A—-4)
Substituting the following expression into Eq.(A-1),

y~n+n 0y + 0ty + 0’y +o. (A—5)
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we get ~ Simplifying Eq.(B-3), we get
1 2 2 3 4
: 2 0
T s + 7205 £ 700a ¥ 7ogs T o(F) T 3T w2t us 0] (7T+4V3)z + (28 + 16V/3)2 + ﬁ?ﬂi%_ﬁ?’_‘/_gzs
1 4 5y
‘E"[“’"ZW +0(n%)] - g,,N 1. (A —6) +(388 4 224V/3)2* + 0(2°) = ¢. (B —4)

_ Let the solution to Eq.(B—4) be the asymptotic series
[1=(L+nge 40’ ys+7°ya+n' ys) +(14mp 40 v+ ya+n'ys )

20~ Y 6a(C)2n, 8n & 6.(¢), as ¢ —0%.
(L e (e et o] € 2; © +1(0) €80 ¢

1 2r2 3 4 51_r11 4 N (B-5)
+3 (1" + "y +0tys + 0] = [zn* +0(0°)] %Z ;) We can prove 6.(C) = ¢*; therefore,
The following equations can be obtained by using the dom- 2 ~Ca+Crn+Cu+ ot (B-6)

inant balance method ]
~ For convenience, let 4, = (7+4v/3), A2 = (28+161/3), As =

1_;2/12 Cej2=0 ggg}]; (320 + 163v/3)/3, Ay = (388 + 2241/3); then, Eq.(B—4) be-
~ys +93 +2/3 =0, ord(nz), comes
~y¢ + 2123 — 13 +212/3 =0, ord(n), A(Cor 4+ o+ Cas+lzat )+ A + P )2
—us + yg + 2yaps — 3y§y3 +y§ + 2y3/3_ 1/45 =0, ord(n'*). 1(C 1 C 2+ (23 C 24 ) 2((21 ("2 )

' (A-8) +As(n+ ) + A+ ) +0(P) ~ ¢ (B-T)

After solving Eqs.(A-8), we finally obtain y» = —7/2,y3 =
(r/2)* +2/3, 44 = —(x/2)° — 7,95 = (x/2)* + x* + 13/15.
- Hence
=T (ot 2y (et (o + B e
A A I Y IR T BT
, (A-9)
Substituting » = 1/¢ and y = 7/2 — = into expression(A-9),
we will get the expression (36)
T 1 T w2 2,1
"t (T3

4
.___.(7r +7r2+13)l+...

I ) (A-10)

Appendix B. Derivation Details for |¢| ~ 1

Eq.(4) becomes Eq.(41) with ( = inv¢ — inv(57/12) and
z = z+5%/12.

(8+4V3)) (2+V3)"M(tan2)" ~z=¢,  (B-1)

n=1
(84+4v/3) tan z + (28 4+ 16v/3)(tan 2)* + (104 + 53v/3)(tan 2)°
+(388 + 224+/3)(tan2)* + O(tan’ 2) —2=¢. (B-2)

According to Taylor series of tanz in Eq.(5), Eq.(B-2) be-
comes

(8+4~/§)(z+%z3 +%z"” +-)

1
+(28+16v3) (2 + 52 +--)]
+(104 4+ 53v3) (2 + %zs +-)°
+(388 + 224v/3) (2 + %f +o-*

+0() =z =¢. (B —3)

After expanding polynomial powers and using the dominant
balance method, we obtain

Az =1, ord(¢),
A1z + Azzf =40, Ol‘d(cz),
Arzs + A222120 + 4328 = 0, ord(¢®),
Arzy + Aa (223 + 22123) + A3(32325) + Aszt = 0, ord(¢Hh).
(B -8}

After solving the nonlinear system of Egs.(B-8), we finally
find

21 =7 —4V3 ~ 0.0717968,

72 = 224+/3 — 388 ~ —0.02061910,

z3 = (323565+/3 — 560431)/3 ~ 0.6517008  10~2,

74 = (168672380 — 97383044/3)/3 ~ —0.1238501 % 102

Hence

2(C) ~ (7—4\/§)C+(224\/§—388)C2+%(323565\/5-560431)(3

+%(168672380— 97383044v/3)¢* + - --. (B-9)
Substituting z = z — 57 /12 into expression(B-9), we get
z(¢) ~ % + (7= 4V3)¢ + (224V/3 — 388)(?

+%(323565\/§—560431)<3+%(168672380—97383044\/5)44+- ..
(B — 10)



